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The coactivator-associated arginine methyltransferase 1 (CARM1)
is recruited to gene promoters by many transcription factors.
To identify new pathways that use CARM1, we carried out
a comprehensive transcriptome analysis of CARM1-knockout
embryos. By using complementary DNA microarrays and serial
analysis of gene expression, we identified various genes involved
in lipid metabolism that were underrepresented in CARM1-
knockout embryos, indicating an important role for this
coactivator in adipose tissue biology. We also observed that the
amount of brown fat in CARM1-knockout embryos is reduced.
Furthermore, cells lacking CARM1 have a severely curtailed
potential to differentiate into mature adipocytes. Reporter
experiments and chromatin immunoprecipitation analysis show
that CARM1 regulates these processes by acting as a coactivator
for peroxisome proliferator-activated receptor gamma (PPARc).
Together, these results show that CARM1 promotes adipocyte
differentiation by coactivating PPARc-mediated transcription and
thus might be important in energy balance.
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INTRODUCTION
Arginine methylation is a common post-translational modification
that regulates several cellular processes, including transcription,
splicing and translation (Bedford & Richard, 2005). There are nine
mammalian protein arginine methyltransferases (PRMTs), which

are divided into two classes: Type I enzymes that catalyse the
formation of o-NG, NG-asymmetrical dimethylarginine (aDMA),
and Type II enzymes that catalyse o-NG, N0G-symmetrical
dimethylarginine formation (sDMA; Clarke & Tamanoi, 2006).
PRMT5 is the main Type II enzyme in mammals and its sDMA
activity is primarily associated with transcriptional repression
(Pal et al, 2003). Conversely, PRMT1 and coactivator-associated
arginine methyltransferease 1 (CARM1) generate aDMA residues,
and function as transcriptional coactivators. Indeed, PRMT1 and
CARM1 methylate distinct substrates and function synergistically
in reporter assays (Koh et al, 2002).

CARM1 was identified as a binding partner for the p160 steroid
receptor coactivator, glutamate receptor interacting protein 1
(GRIP1; Chen et al, 1999). This recruitment of a secondary
coactivator (CARM1) by a primary coactivator (GRIP1) results in
the methylation of histone H3 at Arg 17 (H3R17), the histone
acetyltransferases p300/CBP (Lee et al, 2005), the p160 steroid
receptor coactivator SRC3 (Feng et al, 2006; Naeem et al, 2007)
and a cohort of splicing factors including CA150 (Cheng et al,
2007). CARM1 functions as a coactivator for many nuclear
receptors, such as oestrogen receptor, androgen receptor, thyroid
receptor and farnesoid X-receptor (FXR; Chen et al, 1999;
Ananthanarayanan et al, 2004). It also coactivates other trans-
cription factors such as myocyte enhancer factor 2C (MEF2C),
b-catenin, p53, nuclear factor (NF)-kB (reviewed by Bedford &
Richard, 2005) and the cAMP-responsive element-binding factor
(Krones-Herzig et al, 2006). Thus, CARM1 casts a ‘cloud’ of
methylation over many active promoter regions. A biological
consequence of this methylation is the generation of docking
motifs for tudor domain-containing proteins. Indeed, CA150—a
protein that integrates transcription to splicing—methylation by
CARM1, facilitates a tudor domain-mediated interaction with the
spinal muscular atrophy protein SMN, and this event promotes
exon skipping (Cheng et al, 2007).

CARM1-knockout embryos are reduced in size, die perinataly
and show a partial block in the development of T cells (Yadav
et al, 2003; Kim et al, 2004). To identify primary in vivo pathways
in which CARM1 functions as a transcriptional coactivator, we
undertook a transcriptome analysis of wild-type and knockout
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embryonic day 18.5 (E18.5) embryos. This analysis revealed a
previously unreported function for CARM1 in the process of
adipose tissue development.

RESULTS
CARM1 controls expression of adipogenic transcripts
By using complementary DNA microarray and serial analysis of
gene expression (SAGE) techniques, we screened for genes
requiring CARM1 to augment their expression. cDNA microarrays
are sensitive but limited to analysis of the genes on the array,
whereas SAGE is not as sensitive but allows the analysis of all
expressed genes. SAGE libraries were generated by using
messenger RNA obtained from E18.5 embryos. Two SAGE
libraries were sequenced: CARM1 wild-type E18.5 embryos
(þ diethylstibestrol (DES)) and CARM1-knockout E18.5 embryos
(þDES). These libraries are publicly accessible at CGAP (http://
cgap.nci.nih.gov/SAGE). A comparison of the SAGE tag libraries of
wild-type and knockout embryos identified several transcripts that
were significantly downregulated in CARM1-knockout embryos
(Fig 1, middle column). In parallel, transcriptome analysis using
cDNA microarray was carried out with mRNA isolated from E18.5
embryos. Clear changes in the gene expression profiles were
observed for several similar transcripts identified by SAGE (Fig 1,
right column). The effects of a CARM1-null genotype on the
expression of specific genes was confirmed by northern blot
analysis (Fig 1, left column).

Predictably, several oestrogen-responsive genes showed
reduced expression in the absence of CARM1. These included
complement C3 (Sundstrom et al, 1989), glutathione peroxidase 3
(Waters et al, 2001) and uncoupling proteins (UCP-1; Pedersen
et al, 2001). In addition, DES treatment upregulated complement
C3, CIDEA (cell death-inducing DFFA (DNA fragmentation factor a)-
like effector A) and UCP-1 in the wild type (Fig 1, lanes 1 and 3).
CARM1 also acts as a coactivator of the thyroid hormone receptor
in reporter assays (Chen et al, 1999) and we see a strong
dependency on CARM1 for normal expression of thyroid
hormone-responsive spot (THRSP) 14 (Cunningham et al, 1998).

Unexpectedly, we found a cadre of downregulated genes that
are involved in adipogenesis. These include the following
proteins: THRSP, which is expressed in lipogenic tissues and is
required for de novo lipogenesis in the lactating mammary gland
(Zhu et al, 2005); adipocyte fatty acid-binding protein (FABP4/
aP2); acyl-CoA synthetase 5 (ACS5); adipsin (ADN); apolipo-
protein A-I (APOA-I); and APOA-IV. ADN and the classic peroxisome
proliferator-activated receptor gamma (PPARg)-responsive gene
aP2 are important for adipocyte differentiation, whereas APOA-IV
and APOA-I are important for lipid homeostasis (Tontonoz et al,
1994; Yu et al, 2003). Both UCP1 and CIDEA are abundantly
expressed in brown fat (Lin & Li, 2004; Porter, 2006) and markedly
downregulated in CARM1-knockout embryos. Recently, Krones-Herzig
et al (2006) showed that the expression of gluconeogenic
genes, PEPCK and G6Pase, was largely dependent on CARM1.
Consistent with their results, we saw a decrease in the number of
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Fig 1 | Transcriptome analysis showed changes in oestrogen-regulated and lipid-associated transcripts. Northern blot analysis of transcripts

downregulated in CARM1-knockout embryos (left). Embryonic day 18.5 heterozygous and knockout embryos with (þ ) or without (–) treatment (DES)

were used to isolate messenger RNA. The number of tags obtained from SAGE analysis are listed for WT and KO embryos. The fold change in

transcript levels obtained from complementary DNA microarray analysis is listed as ratio WT/KO. CARM1, coactivator-associated arginine

methyltransferase 1; DES, diethylstibestrol; KO, CARM1-knockout embryos; SAGE, serial analysis of gene expression; WT, wild-type embryo.
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SAGE tags obtained for PEPCK (phosphoenolpyruvate carboxy-
kinase; 8 versus 19) and G6Pase (4 versus 21) genes when
knockout and wild-type embryos were compared. Thus, global
transcriptome analysis shows that CARM1 regulates genes
important for lipid metabolism.

Brown fat tissue is reduced in CARM1-null embryos
To determine whether CARM1 is required for the normal
development of adipose tissue in vivo, we sectioned E18.5
embryos and stained them with Oil Red O to visualize adipose
tissue. Oil red O stains neutral fat in the lipid droplets in brown
adipose tissue. The amount of brown adipose tissue in knockout
embryos was reduced when compared with wild-type embryos (as
per microscopic observation). Knockout embryos also showed a
40% reduction in lipid accumulation in their brown adipose tissue
when compared with the wild-type littermates (Fig 2A,B;
supplementary Fig S1 online). This indicates that levels of CARM1
in the embryos greatly affect the amount of brown adipose tissue
present. However, loss of CARM1 does not result in the total
absence of brown adipose tissue. Thus the function of CARM1 in
brown adipose differentiation or maintenance might lie in a
semiredundant pathway, possibly with PPARg coactivator-1a
(PGC-1a; see Discussion). Immunohistochemical analysis
indicates that the reduction in brown adipose tissue might be
due to a partial differentiation block in the absence of CARM1
(supplementary Fig S5 online).

CARM1 knockdown impedes 3T3-L1 differentiation
Differentiation of 3T3-L1 preadipocytes into mature lipid
accumulating adipocytes, on treatment with adipogenic stimuli,

is an established model to study adipocyte differentiation and the
factors affecting this process (Green & Kehinde, 1975). CARM1 is
expressed in undifferentiated 3T3-L1 preadipocyte cells and its
levels do not increase on differentiation into adipocytes (data not
shown). We used short hairpin RNA to knockdown CARM1 in
3T3-L1 cells. Total cell lysates from stable transfectants were used
to methylate GST-PABP1—a known substrate of CARM1 (Yadav
et al, 2003)—in the presence of [3H]AdoMet as the methyl group
donor. The levels of CARM1 in the B12 line were greatly reduced
and cell extracts were unable to methylate GST-PABP1 (Fig 2C).
The B11 line showed reduced CARM1 levels, but lysates had
some CARM1 methyltransferase activity. Next we subjected B12
and B11 cells to adipogenic stimuli and compared their
differentiation with parental 3T3-L1 cells. CARM1-knockdown
cells showed reduced potential to differentiate into mature lipid
accumulating adipocytes (Fig 2D). In addition, primary mouse
embryonic fibroblasts (MEFs) from Carm1-knockout embryos
(E14.5) also showed reduced differentiation potential (supplemen-
tary Fig S2 online). Hence, CARM1 promotes differentiation of
preadipocytes in vitro. However, various factors have been shown
to be regulating this process including PPARg, C/EBPs and
FXR, and CARM1 might act as a coactivator for one or more
of these factors. Indeed, CARM1 is known to coactivate FXR
(Ananthanarayanan et al, 2004).

CARM1 is a PPARc coactivator
CARM1 enhanced the coactivator function of GRIP1 for nuclear
hormone receptors (Chen et al, 1999), and members of the SRC
family have been shown to be the coactivators for the PPARg-
mediated transactivation (Zhu et al, 1996). Combinatorial gene
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Fig 2 | CARM1 regulates adipose development. (A) Levels of interscapular brown adipose tissue in the embryos. Frozen sections of wild-type (WT) and

knockout (KO) embryonic day 18.5 (E18.5) embryos were stained with Oil Red O to visualize fat accumulation in the embryos. (B) By using a

Chromavision imaging system, the intensity of staining of the brown adipose tissue in each genotype was quantitated. For the quantitation, a wild type

embryo was paired with a knockout embryo. The knockout staining was quantitated relative to the wild-type staining, which was set as 100 and

plotted as mean s.d. Wild-type (n¼ 4) and knockout (n¼ 4) E18.5 embryos were analysed. (C) Knockdown of CARM1 in 3T3-L1 cells shows markedly

reduced potential to differentiate into adipocytes. Short hairpin RNA (ShRNA) was used to stably knockdown CARM1 in 3T3-L1 cells. The top panel

shows a Western blot with a CARM1 antibody. Western analysis with anti-b-actin acts as a loading control (middle panel). The lower panel is a

fluorograph showing CARM1 methyltransferase activity from knockdown cell lysates using GST-PABP1 as a substrate. (D) Adipocyte differentiation

assay and Oil Red O staining of 3T3-L1 wild-type, and the B11 and B12 CARM1-knockdown cell lines. CARM1, coactivator-associated arginine

methyltransferase 1; GST, glutathione-S-transferase.
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ablation studies of the SRCs have shown that these coactivators
are crucial for energy balance in mice (Picard et al, 2002; Wang
et al, 2006). In addition, several transcripts listed in Fig 1 as
regulated by CARM1 are known PPARg targets. Therefore, we
examined whether CARM1 can coactivate PPARg-dependent
transcription. By using Carm1-knockout MEFs and a PPRE
reporter, we observed an increase in luciferase activity in the
presence of Carm1 (Fig 3A). Carm1 also behaved as a PPARg
coactivator in 293 and 3T3-L1 cell lines (supplementary Fig S3
online). To confirm that Carm1 was recruited to PPARg-driven
promoters, within the context of chromatin, we carried out
chromatin immunoprecipitation experiments to show that Carm1
was recruited to the endogenous aP2 promoter, and that Carm1-
mediated H3R17 methylation occured at this locus (Fig 3B;
supplementary Fig S4 online). Thus, CARM1 is a crucial
component of PPARg receptor transactivation pathway and
functions in the adipogenic programme.

DISCUSSION
To our knowledge, the function of PRMTs in adipose tissue has not
been previously studied. Differentiation of fibroblast-like cells into
adipocytes is highly regulated and a multistep process involving
the master regulator PPARg. Early in this process, C/EBPb and
C/EBPd are transiently expressed, and lead to the induction of CEBPa
and PPARg. PPARg and C/EBPa act synergistically to promote the
expression of adipocyte-specific genes such as aP2 (reviewed by
Rosen & MacDougald, 2006). Pparg-knockout mice die at E10
owing to placental defects, and null pups derived by tetraploid
rescue lack white and brown adipose tissue (Barak et al, 1999).

A large family of C2H2 zinc-finger proteins, known as Kruppel-like
transcription factors (KLFs), have crucial roles in adipogenesis (Rosen
& MacDougald, 2006). In addition, the bile-activated nuclear
receptor FXR, which is coactivated by CARM1, has been shown to
be involved in adipocyte differentiation (Rizzo et al, 2006).

Importantly, members of the p160 family of coactivators have
been shown to be important in energy homeostasis. Studies of
Grip1�/� and Src1�/� single-knockout mice have shown that these
two coactivators control the energy balance between white and
brown adipose tissues (Picard et al, 2002). Double knockout of
Src3 and Src1 led to a block in brown fat development with no
lipid accumulation in the tissue, decreased Ucp1 expression and
defective adaptive thermogenesis, and hence emphasized the fact
that the Src3 and Src1 coactivators are crucial for energy balance
(Wang et al, 2006). Recently, Src3 was shown to act synergisti-
cally with C/EBP transcription factors on Pparg2 promoters to
control its expression in MEFs (Louet et al, 2006). Src3-knockout
MEFs show severely impaired adipocyte differentiation, and
re-expression of Src3 is able to restore this defect. Moreover,
Src3-knockout mice show reduced body weight and white
adipose tissue mass (Louet et al, 2006), and also a reduction in
the RNA levels of many selective markers of adipogenesis. Carm1
not only cooperates with Src3 as a coactivator but also methylates
Src3 (Feng et al, 2006; Naeem et al, 2007).

The most extensively studied coactivator of brown fat
adipogenesis is PGC1a. It functions by assembling a complex
that includes histone acetyltransferases, SRC1 and CBP/p300
leading to chromatin remodelling and promoter activation
(Puigserver et al, 1999). Pgc1a-knockout mice are viable and
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Fig 3 | CARM1 potentiates PPARg-mediated gene transcription. (A) The ability of CARM1 to coactivate PPARg was assessed in a fatty acyl CoA oxidase

PPRE-luciferase assay. Carm1-knockout MEFs were transiently transfected with the indicated plasmids, and renilla as an internal control, using

Fugene6. MEFs were treated with either DMSO control (–) or 2 mM (þ ) rosiglitazone 6 h after transfection. Relative activity of firefly luciferase was

normalized to renilla luciferase activity. A mean s.d. of three independent experiments carried out in triplicate is presented. The addition of Carm1

to cells that also express Ppre and Pparg resulted in a significant increase of luciferase activity (columns 4–8; Po0.05). (B) CARM1 and PPARg are

recruited to the aP2 gene promoter. 3T3-L1 cells were induced to differentiate and after 5 days cells were subjected to ChIP at the aP2 promoter.

The experiment was repeated three times with similar results. CARM1, coactivator-associated arginine methyltransferase 1; ChIP, chromatin

immunoprecipitation; DMSO, dimethyl sulphoxide; IP, immunoprecipitation; MEF, mouse embryonic fibroblast; PPARg, peroxisome

proliferator-activated receptor gamma.
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show an inability to maintain core body temperature on cold
exposure owing to reduced expression of Ucp1 (Lin et al, 2004;
Leone et al, 2005). Interestingly, CARM1 and PGC1 have similar
biological properties: they both function as PPARg coactivators; they
both collaborate with SRCs (Chen et al, 1999; Wang et al, 2006); and
they both fall into a class of coactivators that directly regulates
alternative splicing (Monsalve et al, 2000; Cheng et al, 2007).

The ability of CARM1 to coactivate FXR (Ananthanarayanan
et al, 2004) and PPARg (this study), and to behave synergistically
with the p160 family of SRCs implicates this arginine methyl-
transferase at multiple levels of adipose tissue development.

METHODS
cDNA, SAGE and northern blot analysis. Details of SAGE library
generation and cDNA analysis are provided as supplementary
information online. For northern analysis, embryos were obtained
as for SAGE analysis and mRNA was isolated using Fast Track
mRNA isolation kit (Invitrogen, Carlsbad, CA, USA). A 4 mg
portion of the mRNA was run on 1% agarose formaldehyde
gel, transferred to membranes and probed. The probes for
northern blot analyses were generated by reverse transcrip-
tion–PCR from mRNA and were sequence validated. Primer
sequences for the generation of probes are listed in the
supplementary Table I online.
Histology. Embryos (E18.5) were OCT frozen in liquid
nitrogen and 4 mm sections were used for staining with OilRed
O. Staining was quantitated as described in the supplementary
information online.
Short hairpin RNA knockdown of CARM1. Forward and reverse
oligonucleotides (see supplementary information online) were
annealed and cloned into a pSuper-Puro vector (OligoEngine,
Seattle, WA, USA) between BglII and HindIII. This vector was used
to transfect 3T3-L1 cells and transfectants were selected on
4 mg/ml puromycin (Sigma, St Louis, MO, USA). Resistant
colonies were tested for CARM1 expression using a CARM1
antibody (from S.R.).
In vitro methyltransferase assay. Cell lysates were prepared from
knockdown cell lines and the in vitro methylation assay was
carried out as described previously (Yadav et al, 2003).
3T3-L1 differentiation assays. 3T3-L1 cells were obtained from
ATCC and subjected to a differentiation assay as described
previously (Green & Kehinde, 1975; Rizzo et al, 2006).
PPARc luciferase assay. PPRE-CMV-Luc (firefly luciferase) and
pSG5-PPARg were gifts from Dr F. Gonzalez, NCI. phRL-CMV has
humanized Renilla luciferase driven by CMV promoter (Promega,
Madison, WI, USA). phRL-CMV-renilla was used as a transfection
control and experiments were carried out as described previously
(Yadav et al, 2003).
Chromatin immunoprecipitation assay. 3T3-L1 cells were differ-
entiated as described above. Chromatin immunoprecipitation
(ChIP) experiments were carried out using the EZChIP kit
(Milipore, Billerica, MA, USA). ChIP was carried out with the
following antibodies: H3R17 (Milipore); acetyl H4 and RNA polII
(Covance, Denver, PA, USA); PPARg and RhoA (Santa Cruz
Biotechnology, Santa Cruz, CA, USA); and CARM1. The primers
used to amplify the aP2 gene promoter have been previously
described (Yin et al, 2006).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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